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I .  INTRODUCTION

This report describes the results of computer calculations to f ind the pressure distributions on two axisymmetric bomb
shapes of current interest to Aerodyna mic Research Group at W.R.E. The studie s were initiated to augment wind-tunnel
tests of the two bodies , and were particularly concerned with the effects of changes to the base geometry, including the
influence of the sting on wind-tunnel models.

The calculations were limited to inviscid , axisymmetric flow solutions , and because the emphasis was on simplicity and
ease of operation , the method chosen was that of Landweber (ref.l)which has recently been programmed in Fortran by
Albone(ref.2). The theoretica l formulation assumes incompressible flow and the results given here are for zero Mach
number; however a Gothert-type correction has been included to enable approxi mate solutions for subsonic compressible
flow to be obtained.

2. DESCRIPTION AND USE OF THE PROGRAMS

2. 1 The integral equation

The method is eqwvalent to a representation of the body by a ring vortex distribution r(s) over its surface.
With the coordinate system shown in figure 1 , the velocity induced at station t on the body axis by the vorticity
on the surface element ds is (see, for examp le , reference 3):

y2 (x)r(s) ds
U(x ,t) ° . (1)

2 [y 2 (x) + (x-t)2 3/2

A consequence of representing the body surface by a vortex sheet is to replace the bod y interior by fluid at rest.
Thus the vortex distribution must induce an interior velocit y -U.. to cancel the incident free stream. In particular ,
the velocity induced along the axis must be -U., .

It can be shown that the velocity jump across a vortex sheet is minus the local vortex intensity. The condition
of zero tota l internal velocity then gives

u(x) -r(s) , (2)

where u(x) is the longitudinal surface velocity at station x. Substituting (2) into (I)  and integrating along the
body surface gives the total velocity on the body axis , and equating to -U.. gives the integral equation:

u(x) y2 (x) ds
/ ° = u.. (3)

J
O 2 [y 2 (x) + (x - t)2 3/2

to be satisfied at all points t between 0 and P. The solution of (3) gives the velocity distribution u(x) , and thence
the pre ssure distribution C~ (x).

A rigorous derivation of(3) and an iterative method of solution have been given in reference 1 and repeated in
reference 2 , which also describes Fort ran programs to solve for both closed bodies and those with a pa rallel
afterbod y extending downstream to infinity. These programs need only minor alterations to be run on the W.R.E.
computing system. For intending users without ready access to reference 2 , listings are included in the Appendix .

The fact that the integral equation (3) for the surface velocity is satisfied on the body cent reline, means that
the method may not be as accurate as others which satisfy a boundary condition on the body surface , such as
that of Hess and Smith(ref4) . For body shapes not too dissimilar from an ellipsoid of revolution, the solution
converges to any desired degree of accuracy, but for more complicated shapes the solution may converge to a best
solution and then become divergent. In such cases this best solution is usually sufficiently accurate for most
practica l purposes. In any case , the programs are simple to use and require only minimal computing times 
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compared with the more accurate methods , which determined their use in the present application. Another
proper ly of the method of solution is that corners or sudden changes of curvature in the body profile tend to be

“smoothed” , which is not a serious limitation since the bounda ry layer will have a similar effect in the seat flow .

2.2 Input  and output

Input to each program consists of a subroutine called BODY which can calculate the radius and surface slope of
the body at any longitudinal station , and several parameters which are declared as data at the beginning of the

program. For the closed-body program these are as follows:

NMAX - the maximum number of iterations allowed (e.g., 200).

liPS - a quantity which , when greater than the maximum difference between any two successive
iterations , causes the iteration procedure to stop.

XXO - abscissa of body nose.

XXI - abscissa of body tail.

MACH - Mach number , used with a Gothert-type correction to allow for compressibility effects.

For the infinite - afterbody progra m, the input parameters are as follows:

NMAX , EPS, MACH - as for the closed-body program.

LENGTH - length of forebody. Note that in this program , BODY assumes the forebody to be
between x = 0 and x LENG TH , so that for complicated bodies the same basic
subroutine can be used for each program.

‘(AFT - radius of afterbody.

The program output consists of a listing of the Gaussian abscissae used in the numerica l integration for each
iteration (40 points along the body axis in the case of the closed-body program , and 30 points along the forebody
axis for the infinite-afterbody program), togethe r with the associated values of body radi us and slope, non-
dimensional surface velocity and pressure coefficient. The number of iterations , and maximum difference between

the two final iterations , are also printed.

2.3 Body geometry

Two basic configurations of interest were studied , and designated Body- A and Body-B respectively. Two further
variations of the Body-A ta il geometry are referred to as A(i) and A(ii). The half-body profiles of the various
configurations are given in fi gures 2 to 6, the x - values being in bod y calibres.

In those cases where the configuration has a blunt base , for example when modelling the free-flight situation ,
some extension of the model surface is necessary to simulat e the surface streamline separating from the base.
These extensions are shown on the fi gures as a broken line. Where a sting whose diameter is equa l to the base
diameter d B is present this problem does not arise and the sting is assumed to extend downstrea m to infinity .

3. RESULTS AND DISCUSSION

3.1 Standard Body-A con fIguration

Figure 2 shows the variation of surface pressure coeffIcient on the standard Body-A geometry with base flow
represented by (a) a strong flow expa nsion behind the base; (b) a large sting of diameter d8 

or alternatively , a

thick parallel wake; and (c) flow separation from the base and re-attachment to a thin sting of diameter dB ~ 2.

These examples give a wide variation in base pressure , but the influence of the base flow extends only about one

base dia meter upstream from the base , giving confidence in the va lidity of the solution ahead of t his region.
If condition (c) of figure 2 is a fair representati on of the base flow with a thin sting present , then condition (b)

implies that a large sting can cause a significant strengthening of the adverse pressure gradient near the model base

and perhaps influence the measured fin characteristics . The uncertainty regarding the best choice of base flow
geometry can be partly resolved from measured base-pressure data. Such data are available from reference S for
a variant A(i) of the Body-A configuration , which is discussed in the following section. 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ .,-- ~~~ -~~~~-,-—--—- - . 

. -



~~~~~ - -  -.~~~~~~. — -~~~~~~~~~— -~~

3.2 Configuration A( i)

The A(i) vari ant has the rear portion of the standard boattail , where fins are normall y located , replaced by a
cylindrica l section which gives a 45% increase in d

B 
over the standard configuratio n , the slope of the tail cone

section remain ing the same at ~ 0 40’ . The afterbody of this configuration and the calculated pressure
distribution are shown in figure 3(a), with the flow assumed to separate from the base para llel to the cylindrica l
section. The computed values not shown for the forebody are identical with those given in figure 2 for the
standard configuration. Figure 3(a) shows a strong, favourable pressure gradient along the tail cylinder , instead
of the weak adverse gradient on the standard body (figure 2 condition (c)). This may result in improved fin
lifting performance by reducing the tendency for flow separation in the lee-side fin root region.

Figure 3(b) shows the effect of removing the surfa ce slope discontinuit y on the A(i) afterbod y by fitting a cubic
polynominal to the conical and cylindrical sections between x 10 and x = 11 .  Similar fairing will be effected
by the boundary layer in the real flow , and wind-tunnel measurements (from reference 5) on the A(i) model,
which are included on figure 3(b), compare favourably with the present results. A sting of diameter d B / 2 was used

for the measurements , and the data indicate some flow expansion behind the base. The calculated results can be
made to agree more closely by including a small expansion in the base-flow model , as shown in figure 3(c).

3.3 Configuration A(ii)

The A(ii) configuration has a flared tail section instead of the cylindrical section of the A(i) variant. This is
shown in figure 4 together with the strong, favourable pressure gradient resulting from this geometry. As
mentioned above this is expected to be beneficial to fin performance , but to offset this there is a strong adverse
gradient ahead of the flared section which is likely to cause some degree of flow separation , and higher dr ag
resulting from the large r base area.

34 Body-A with variable afterbody slope

Pressure distributions were calculated on the Body-A forebod y fitted with conical afterbodies of half angle
~ 0 100, 150 and 200 respectively. The results are displayed in figure 5. The adverse pressure gradient on the
afterbody strengthens dramatically with increasing slope, but the afterbody slope has little effect on pressure
coefficients ahead of about the mid-point of the central cylindrical section. If it were desired to find the maximum
slope tolerated before separation became significant , a boundary-layer program could be used in conjunction with
the present analysis.

3.5 Body-B results

The relatively small base of the Body-B configuration , shown in fi gure 6,would require the stin g diameter for
small wind-tunnel models to be as grea t or greater than dB .  Figure 6 compares the pressure distributions near

the base when a sting of diameter dB 
is present and absent. Consistent with the earlier results , the sting magni -

lies the unfavourable pressure gradient over the tail section where fins would normally be located. This should
be considered when interpreting measurements of fin properties.

4. CONCLUSIONS

Pressure distributions have been calculated on two bodies of revolution in incompressible, inviscid , axisymmetric flow.
The progra ms of Albone(ref.2) give sufficiently accurate results with minimal user effort and computing time. Bodies
with bluff bases such as boattails can be treated by assuming the body surface to be extended , thereby simulating the
flow separation from the base. The choice of an appropriate base-flow model can be made more reliable if base-
pressure measurements are available for comparison.

The results have shown that a favourable pressure gradient can be created by replacing the rear portion of a boattail
with a cylindrical section , which may improve the effectiveness of fins mounted thereon. Conversely, fin lift measure-
ments on wind-tunnel models may be adversely effected by the presence of a sting if its diameter is comparable to the
m odel base diameter. 
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APPENDIX I

PROGRAM USTINGS

(a) Closed-bod y progra m

C PROC4~A~.1 FOR CLOSEr) A X ISY~’MFTPIC BoDy

DIMEN SIoN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I ),C~~(4 2) , XK ( 4O , 4 o )  , F2 ( 4 O)

C NMAX IS M A X  NO OF I T E RA T I O N S  ALLOWED.  FPS IS AR SOLuTF  FPROR L IM I T
C BFTWFEN ITEPATION~ AT CONVERGENCE . XX O, X X I ARE FORE AND AFT
C AI4S CISSAE OF Bf lr )y .  S/P ~~ )Y G E N E R A T E S  ORDINATE FR ANt) SLOPE FIB OF

C BODY AT EACH ABSCISSA XB .

REAL ~IACH
DATA NMAX ,EPS/ 50.0.0001/

DATA X X O . X X I / O . O , I . O /
D A T A  ~‘ACH/O.O/
RF.AL’~~ AD LIM (2C) /.004521?771 ,.0t04 2n4S,.0I64210584,.022245R492.

1 .027~~37O070,.0334A01°~~3,.03R7~~2j(~R,.Q4 70O0R7..04R68SR076,

2 •0S3227~~47,.OS74 7A°I,.0f>t306242S..064R04OI35,.0~~7912O45R,
3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4 •07 7r ~~~

r
~~Q,~~~ C /

PFA L~~~~ .N Iv ( ? O )  / .Q Q P .2 3 77 1  ,.~~°O72(~23° ,.07725995..95791683Q.

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

P~~ T~~O~~ 1 —~

!~F TA )t~ T ( I  T S O )
X’.l Ifl r ( X’<~ ,+XX ’L )/2.

C ~LL ~c~r~Y ( X M 10, YM ID. F I B)
YM T f l~rY ” If l*’V~ TA

FI t’ F] H *OF TA

00 2 K 1  .20
KK 4 I — K

A (K ) ~-A P t I ’  (K
A(t~K )~~A ( K )
X (KK )~~XD t M ( K )

2 X ( K ) = — X P u M ( K )
00 S c = t ,4 0
X (K ) =Ci • ( X  (K ) * (  X X I — X X O  I
XII X (Ic )
CALL 000y(xR,Fp ,F1P)

Ffl=FF4 ’~’F’E TA
FI~~~~F I : ~~ FT A
F(K) F0

FI(K )’rF I F’
F2  ( K  ) ~~ I B
X I C K )~r (X( K)—XX 0)*(XXl— X (K))

FI(K)~~I./SO PT (l.+F1 (K)’~’Ft (K))

W F(K)=F(KPt’F (K)
XKO X Kj ((XX I—XXO) /(2 .- ’~’YNID ))

00 3 I~~ I,4()
F OF T~~~~(I)/X 1 (I)

XL~~SC’~~T (1 ./FOFT)

XK ?= (1•+XKB )/ (1.+XK1 (XL ))

DO 4 J1 .4 0

X l) 1F C U ) — X  (I)) *( X ( J )—X (I))
XK (I.J) F (J)/SORT ((XDIF+F (J))**3)

C.XT FOFT’~XI (J)

‘ I! • ~~~~~~ ~
— ‘ 

~~~~~~cvTT A’~’ .
~ :3~ It~ 1~-~~i . — 
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4 ct,M 511r.’+A (J )* (XK (I,J)—XKDAS I-l )

F (t )r l . —0 .25I .(1 .+XKO )* (XXI XXO )*SUM—XK2

F t ( I ) = ( E ( I ) + X K O ) / ( 1 + X K O )
3 t I ( 1 ) (1+XKO)*FI (1)

N 0
EMAX 100

!~ N N+1
F LAST = F MA X

Di) 6 1=1,40
U ( I )=u ( I )+F 1 (I )*E( I)
Stf l1= O .
00 7 J 1,40

7 S UM=SIJM +A(  J ) * X K  ( I  • J )*(E (J)—E ( I))
6 F2( I )=F1( I )*F ( I )—.25*SUM* (XX1—XXO )

00 13 K = 1 ,4()

13 F (X) F2 (K)
EMA X ABS CE (1))

0012 K=1,40
IF ( ABS (F (K ) ) .GT .EMAX )EMAX=ARS(F (K)

12 CONTINUE

IF (FLAST—F M A X )  15.17,17

17 1F (F~’AX. c,T.FPS.AND.N.LT.NMAX ) GO TO 5
IW WB ITF (f~,34 )N .FMAX ,MACI-I
14 Frl I?MA T (20H NO. OF ITERATION S = ,I3,1OX ,13H MAX. ERROR ,FlS.7.

I IOX ,91-IMACH NO . ,F5.3// )
00 0 Kr I , 40

F (K )= SORT(F (K))
F (K)=F(K)/HFTA
F2 (K)=F2 (K )/RFTA

U (K)r1+(U (K)— 1)/BETSO
IF (MAC H—O .1) ~ B ,pq,19

?‘-‘ C I N C= 1— U (K )~ ::t J ( I <  )
CP (K  ) INC +0 • 25 * M A C H* M A C H* C I NC  *CIWC
GB TO

1° CP (K)=((1—c .2*MACHl ’MAC (u(K)*u (K)—1) )**3.5—I)/ (O.7*MACH*MACH)
o CONT INUF

~) B I T P ( I , I 5 )
1~~ FflRt.IAT (f,X,?H X ,13X,2H Y,12X,AH DY/OX,7X ,9H VELOCI.TY,3X.15H PRESS.

IC BFFFT .
WPITF ((-,,1 6)(X (K),F (K),F2 (K),u (K),CP (K),K=1,40)

16 FO PMAT (3(FIO.6,6X),F8.4,6X,FR.4)

C
4 7  STO P

FNI)

FUNC T I O N  X K I ( f l )

I F (I’— 1 .0001)3,3 .1
-
~ IF (H_ C I .~~QQQ)2, 4.4

A X K I = 0 . ’ -
RE TURN

1 C=~~’~r1
f l = S O P T ( C — I  • I
F = ALO ; ( I - I +n ) ‘~‘P
X K I = (F  — D I  / ( C  *0— F

2 C= 119 ’tt

n— cor~ T (1 •—C I
F =A L f I G ( ( 1. +f l ) / f l ) * C
X~~ 1r (fl—~ )/(2 .*D*D*fl—D+E )
RI- TI JON
END

~~~~ r r r  ; 
t ~~~~ I”~~-J

• ~~~~~~~~~ ~~~~~ - 
-
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f~b) Infinite - afterbody program

C PROGRAM FOR BODY EXTENDING TO INF I NITY

DI MENSION A (6O),X(6O),F1 (60).F(e,0).F1(60),F2(60),u (6o).F(60),Cp (6O
1 ),F2(60),XK (6O,6O)

C NMAX IS M A X  NO OF I T ERA T I ONS  ALLOWED.  CONVERGENCE W HFN M A X  DIFFERENCE
C RETWFFN iTERATIONS IS L.F. FPS. XXO IS ABSCISSA OF NOSF(N.B . JUNCTION
C OF RODY/AFTFPBI1DY IS AT X 0). YA FT IS RADIUS OF PARALLFL AF TERRODY.
C S—P BI1DY (,FNFPATFS RA D IUS FP AND SLOPE F1~~ AT EACH ABSCISSA XR

PEAL LFNGT H
PFAL MA CH
r ,A T A  N MA X , F P S/ 5 0,0 . 0 0 01 /
DATA LFNGTH,YAFT /2 .265,0.5/
DATA MACH/0.O/

R~~A L*8  A D I M ( 1 5)  / .0079651925,.O ) 546 646 R 3,.025784 7070 ,.03879c1926,
I •04W402A725,.C574Q31562,.06c9742799,.0737559747,.0507558952,
2 •0~~6R’~~~7572,.0921225222,.0O636R7372,.0995R342o~,,.1o176239O,
3 . 1 u 2~~~~~~A S 3 /

PFAL*R XINJM( 15 ) /.9Q6BQ34P4,.qsB368RI23,.Q6Oo21R~~5,.9262O0047,
I • Mt~2SAC.S36..R29565762,.767777432,.6O7B504g5,.62O5261R3,.5366p414R

2 ,  • 4 67  :33 77 ,  • 352 704 726. • 254636R26, • 15356~~914, . 0514718426/
PFTSO= 1— MACH *MACH -

BE T A S O RT  ~~~~ T S O )

Y A F T Y A F T * B F TA /LENGTH

DO 2 K 1.15
K K = 3 1 — K
A (K ) = A 0 t 5 ’ (K
A ( K K  ) A ( v  I

X ( K  ) = X f l I r r i ( K )
X ( K K ) . X ( V  )

2 X ( K ) — — X ( K )

OP 1 7 K I •
K K  =3(1 +K
A ( K K  ) =A ( K

17 X ( t c K ) X ( K )
00 5 K 1 . 3 0
X (K )=0.S*XX0* (1.—X (K))

Xt~~ LrNGTH’~ (X(K)+1.)
CALL BODY(XR,FP,FIR )
FM=FO/ LENGTH

FB FB* B FTA
F 1D=F II1*F~F T A

F (K )=FR*FP
F1(K ) 1./ SORT(1 .+F1Ft*F1B)

F2(K )=FIfl
8 A C M  )0.25*XXO*A (K)

0014K 31 .60
X ( K ) = ( 1 . + X ( K ) ) / (1.— X ( K )  I
F(i( )=YAFT*YAFT
Fl CK )=I .
F2 ( K  ) =0.

14 A(K) —O.25* (1 .+X (K))* (1 .+X (K))*A(K)

DO 3 1 1.60
FOFT F ( I I/tX (1 )—XXO )

F ( I 1 =0.

~
-

~~‘ -~T A~. f ’ !~ 
p

U I -

~ 
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~~~~~~~~~ ~~~~~~~~~~~~~ - - — - ~ - - - ~~~~~ -- 
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DOt 4 J 1,60
XOIF (X(J)—X( I) )* (X(J)—X ( I))
XK (I~~J )=F (J) / SORT ((XOIF+F (J))**3)

GXT FOFT* (X (J)—XXO)
XKDASH=GXT/ (XDIF+C,XT)**1.5

4 F( I )=E ( I )+A(J)*(XK.( I ,J)—XKDASH )

F 1 ( 1 )  =F ( I )
3 U( I ) F 1  ( I)

N 0

• S N N+I
EMA X 0
DOf. 1 I,60
( I C  I )=U ( I )+F 1 (I )*F (J I
F2 ( I )=F I ( 1  )*F ( I )

• 00 7 J 1.6O
7 F2 ( I ) F2 ( I  ) + A ( J ) * X K ( I . J ) * ( E ( J ) — E ( I ) )

~‘ CONTINIIF

00 12 1 1 ,G0
F ( I  )= F?  ( I )

12 IF( ABS (r(I)).(,T.EUAX) FMAX= AAS(EC!))

I F (FMAX.GT .FPS .AND.N.I_ T.NMAX) GO TO S
W I .  I TF ( ( ,10 IN • F MA X  ,MAC H

1
~~ 

rc o , HA T ( 2G H~~~n. OF IT F RA I I O NS  , I 3 . I OX , 13 H  M A X .  ERROR = ,F 1 5. 7,
I t o x .  I O I I MA C H

14 j’I I I ‘I K I ,
R ( K ) -  ‘ O R T ( F ( K ) )

X (K  ) LrNGTI-I* ( X C K I + I • I
F. ’ ( K  ) = F 2 ( K ) / B F TA
i s ( K  ) = 1 ÷ ( I i ( K  I — I  )/ I 4ETSO
I F ( M A C H — O . 1 )  2’ .29.19

?O C I M C = l — I l ( K ) * U ( K )
CO C K  )=C !NC+0 .26*MACH*MACH*CI?~tC*C1NC

Gi l TO C)

1’~ C P ( K ) = ( ( I_ O . 2 * M A C H * M A C H ’ t ’ ( ( I ( K ) * ( I ( K ) — 1 ) ) * * 3 . 5 — ) ) / ( 0 e 7 * M A C H * M A C H )
‘) CONTINI II

1” FtI4”AT (GX ,2H X,1 3X.2I-i Y ,I2X ,AH DY/l)X.7X.OH VFLDC I TY.3X,

I 1 4H PQFSS. COFFT.)
I. IT ’~~(A. , 1 6)  ( X ( K )  ,F (K . )  ,F 2 ( K )  , L ’ ( K )  ,CP(K.) ,K= I .40)

11’ FDPiAAT(F1n.5.6X.F10.f.,6X,FtO .6,SX,FR.6.AX,F5e4)

F
Ii -

~ STOP
F ND

r tr rT  ~~~~ I !~~ A
!. ‘ tf5— % I ~~~~ 

- 
,— ~L) LJ I j~t i~~~~~ ~~~~ •. .  • •.

~ 

~ :~
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Figure 1. Coordinate system
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Figure 3(a), (b) and (c)
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